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Abstract—Poisson sampling is a method for eliminating de-
pendence among symbols in a random sequence. It helps im-
prove algorithm design, strengthen bounds, and simplify proofs.
We relate the redundancy of fixed-length and Poisson-sampled
sequences, use this result to derive a simple formula for the
redundancy of general envelope classes, and apply this formula
to obtain simple and tight bounds on the redundancy of power-
law and exponential envelope classes, in particular answering a
question posed in [1].

I. INTRODUCTION

Universal compression is the design of a single scheme to
encode an unknown source from a known class of distribu-
tions. Let P be a distribution over A. From the source coding
theorem we know that H(P ) bits are necessary and sufficient
to encode P . Any distribution Q over A implies a code that
uses − logQ(a) bits to encode a ∈ A. The code implied by
the underlying distribution uses − logP (a) bits and expected
code length is the entropy H(P ). The (worst-case) redundancy
of a distribution Q with respect to P is

sup
a∈A

log
P (a)

Q(a)
,

the largest difference between the number of bits used and the
optimal. We assume the distributions belong to a known class
P . Then

R̂(P) = inf
Q

sup
P∈P

sup
a∈A

log
P (a)

Q(a)
,

is the worst case redundancy, or minimax regret of P .
Let P̂ (a)

def
= supP∈P P (a) be the largest probability as-

signed to symbol a by a distribution in P . Then,

S(P)
def
=
∑
a∈A

P̂ (a)

is the Shtarkov sum of P . Shtarkov [2] showed that

R̂(P) = log (S(P)) ,

and the optimal distribution assigns probability P̂ (a)/S(P) to
a ∈ A.

In this work we study coding of i.i.d. samples from unknown
distributions. For a distribution P on an underlying alphabet
X let Pn be the product distribution P ×P . . .×P over Xn.
Let P belong to a known class P . Let Pn be the class of all
distributions Pn with P ∈ P . Coding length-n sequences over
X equivalently implies encoding symbols from A = Xn. In
such block encoding we treat each xn1 ∈ Xn as a symbol a.

As before we consider the class of all distributions (not only
i.i.d.) Qn over Xn to define

R̂(Pn)
def
= inf

Qn
sup
Pn

sup
xn1∈Xn

log
Pn(xn1 )

Qn(xn1 )
,

as the worst case redundancy, or minimax regret of Pn. The
class P is said to be universal if R̂(P) = o(n), i.e., redundancy
is sublinear in the block-length.

The most extensively studied [3–12] class of distributions
is Ink , the collection of all i.i.d. distributions over length-n
sequences from an underlying alphabet of size k, e.g., over
[k]. It is now well established that

1) For k = o(n)

R̂(Ink ) =
k − 1

2
log

n

k
+
k

2
+ o(k),

2) For n = o(k)

R̂(Ink ) = n log
k

n
+ o(n).

In particular [3, 4] showed that class of all distributions over
N has infinite redundancy.

While the problem was traditionally studied in the setting of
finite underlying alphabet size and large block lengths, how-
ever in numerous applications the underlying natural alphabet
best describing the data might be large. For example, a text
document only contains a small set of the entire dictionary, a
natural image has many possible pixel values.

The class of all i.i.d. distributions over N is therefore too
large to provide meaningful compression schemes for all
distributions. These impossibility results led researchers to
consider natural subclasses of all i.i.d. distributions and then
compress sequences generated from distributions in these or to
consider all i.i.d. distributions but decompose sequences into
natural components and compress each part separately.

We now describe three such approaches that have been
proposed in recent years to characterize large alphabet com-
pression. [13] propose to encode the order of symbols (pattern)
in the sequences and the dictionary separately. [14, 15] studied
the compression of patterns and in particular show that patterns
can be compressed with sublinear worst case redundancy i.e.,
they are universally compressible.

[16] consider the class M of all monotone distributions
over N. They first show that even this class is not universally
compressible. Despite this, they designed universal codes for



monotone distributions with finite entropy. [17] study the
redundancy ofMk, monotone distributions over alphabet size
k, as a function of k and the block length n.

In this paper, we consider a third, natural and elegant
approach, proposed by [1]. They study a fairly general class
of distributions, called envelope classes, which as the name
suggests are distributions that are bounded by an envelope.

They provide general bounds on the redundancy of envelope
classes. The upper bounds on the worst-case redundancy
are obtained by bounding the Shtarkov sum. They provide
bounds on the more stringent (for lower bounds) average case
redundancy, where instead of the supremum over all possible
sequences, they consider the expected log ratio, i.e., the KL
divergence. For this quantity, they provide a more complex
employing the redundancy-capacity theorem.

We now introduce the Poisson sampling model, and later
use it to provide redundancy bounds on envelope classes.

II. POISSON MODEL

Poisson sampling provides simplified analysis in a number
of problems in machine learning and statistics [18]. To the best
of our knowledge, the first application of Poisson sampling in
universal coding was in [19], and [20] to prove near-optimal
bounds on the pattern redundancy. More recently, [21] also
apply Poisson sampling to provide simpler coding schemes
for compressing i.i.d. distributions. In this work we are in-
terested in coding/prediction over countably infinite alphabets
described bounded by an envelope.

Let poi(λ) be a Poisson distribution with parameter λ and

poi(λ, µ)
def
= e−λ

λµ

µ!

is the probability of µ under a poi(λ) distribution. For a
distribution P over X , recall that Pn is a distribution over
Xn. Similarly, we define a distribution P poi(n) over X ∗ def

=
X ∪X 2 ∪X 3 . . . as follows. First generate n′ ∼ poi(n), then
sample the distribution i.i.d. n′ times. Therefore the probability
of any sequence xn

′

1 ∈ X ∗ is

P poi(n)(xn
′

1 ) = poi(n, n′)Pn
′
(xn

′

1 ) = poi(n, n′)

n′∏
i=1

P (xi).

Similar to Pn, let

Ppoi(n) def
= {P poi(n) : P ∈ P}

be the class of distributions over X ∗ via sampling a distri-
bution i.i.d. poi(n) times. Under this model, the advantage is
that the number of appearances of symbols (multiplicities) are
independent of each other.

Note that even though the length of the sequence is random,
it is concentrated around n as a Poisson random variable.

For large n, the length n′ of a Poisson sampled sequence
is concentrated around n. Using this, we show in Theorem 2
that it is sufficient to consider Ppoi(n) instead of Pn.

We first describe some properties of Poisson sampled dis-
tributions.

A. Properties of Poisson sampling

The multiplicity of a symbol in a sequence is the number
of times it appears in it. The type of a sequence xn1 over
X = {a1, . . . , } is

τ(xn1 )
def
= (µ(a1), µ(a2), . . .),

the tuple of multiplicities of the symbols in the sequence
xn1 [22, 23]. For example, if ai = i, for i = 1, . . . , 6 denotes
the possible outcomes of a die. Then the sequence of outcomes
2, 3, 1, 6, 1, 3, 3, 4, 6 has type τ = (2, 1, 3, 1, 0, 2). Any product
distribution assigns the same probability to sequences with
the same type. Therefore, for most statistical problems, under
independent sampling, it suffices to consider only the type as
the random variable.

When |X | = k, this corresponds to the balls and bins model
with n balls and k bins. The main difficulty in analyzing such
models is the dependencies that arise among the multiplicities,
e.g., they add to n [18]. However, if we consider poi(n)
sampling, the distribution P poi(n) has the following properties.

Lemma 1 ([18]): For any distribution P poi(n),
1) conditioned on n′, the distribution on Xn′ is Pn

′
for

discrete distributions.
2) A symbol a ∈ X with P (a) = p appears poi(np) times

independently of all other symbols.
This shows that the multiplicities are independent under

Poisson sampling.
In the next result we relate the redundancy of Poisson

sampling to fixed length sampling. In particular, we show that
it suffices to consider P poi(n).

Theorem 2: For any ε > 0, for n > n0(ε,P)

R̂(Ppoi(n(1−ε)))− 1 ≤ R̂(Pn) ≤ R̂(Ppoi(n)) + 1.

III. RELATED WORK AND NEW RESULTS

Definition 3: The envelope class of a function f is the class

Pf
def
= {(p1, p2, . . .) : pi ≤ fi, and p1 + p2 + . . . = 1}

of all distributions such that the symbol probability is bounded
by the value of the function at that point.
Analogous to Pn, we can define Pnf and Ppoi(n)

f .
The study of universal coding for envelope classes was

initiated in [1], where they provide upper and lower bounds on
the redundancy. They show that if

∑
fi =∞ the redundancy

is infinite for any n, and therefore consider only absolutely
integrable envelopes. Their upper bound states that

R̂(Pnf ) ≤ min
u≤n

[
n
∑
i≥u

f(i) +
u− 1

2
log n

]
+O(1).

They prove a more complex lower bound on the average-
redundancy. More recently, [21] provide bounds of similar
order for envelope classes using Poisson sampling.

We provide simple bounds on R̂(Ppoi(n)
f ) in terms of the

redundancy of a simple one dimensional class of distributions
characterized by a single parameter λmax, as

POI(λmax)
def
= {poi(λ) : λ < λmax}.



This is the class of all Poisson distributions with parameter
bounded above. This class is simple enough, so that we can
bound its redundancy tightly.

For an envelope characterized by f , let λmax
i

def
= nfi. Let

lf be the smallest integer such that∑
j≥lf

fj ≤ 1− ε.

This also implies that
∑
j≥lf λ

max
j ≤ n(1− ε).

We now state our main result on envelope classes.
Theorem 4: For the envelope class Pf ,
∞∑
i=lf

R̂ (POI(λmax
i )) ≤ R̂

(
Ppoi(n)
f

)
≤
∞∑
i=1

R̂ (POI(λmax
i )) ,

where λmax
i = nfi.

Since, we use POI(λmax) as a primitive, we now show
simple bounds that will be used to compute redundancies of
specific classes later.

Lemma 5: For λ ≤ 1, R̂
(

POI(λ)
)

= log (2− exp(−λ)) ,

and for λ ≥ 1,√
2(λ+ 1)

π
≤ R̂

(
POI(λ)

)
≤ 2 +

√
2λ

π
.

We now consider power-law and exponential envelopes and
apply Theorem 4 to obtain sharp bounds on redundancies of
these classes improving the previous results.

To prove the efficacy of these bounds we apply them on the
Power-law and exponential envelopes.

Definition 6: The power-law envelope class with parame-
ters α > 1 and c is the class of distributions Λc·−α over N
such that ∀i ∈ N, pi ≤ c

iα .
Definition 7: The exponential-law envelope class with pa-

rameters α and c is the class of distributions Λce−α· over N
such that ∀i ∈ N, pi ≤ ce−αi.

[1] obtain bounds on the redundancy of these classes. For
power-law envelopes they show that for large n,

C0n
1
α ≤ R̂(Λnc·−α) ≤

( 2cn

α− 1

) 1
α

(log n)1−
1
α +O(1), (1)

where C0 is a constant (function of α and c). For exponential
envelopes they prove that

log2 n

8α
(1 + o(1)) ≤ R̂(Λnce−α·) ≤

log2 n

2α
+O(1).

[24] improve the bounds for Λnce−α· and show that

R̂(Λnce−α·) =
log2 n

4α
+O(log n log log n).

More recently, [25] extend the arguments of [24] to find
tight universal codes for the larger class of sub-exponential
distributions, which have strictly faster decay than power-law
classes, but slower than exponential.

However these results do not find the optimal redundancy
of power-law envelopes. Their techniques seem to rely on the
fact that exponential envelopes restrict the support sizes to

be poly-logarithmic and break down for more heavy-tailed
distributions, such as the power-law envelopes.

We show that simply applying Theorem 4 to these classes
and bounding the resulting expressions gives tight redundancy
bounds. In particular, for Λnc·−α , we show that

Theorem 8: For large n

(cn)1/α

2

[
α+

1

α− 1
− log 3

]
− 1 ≤ R̂(Λnc·−α) ≤

(cn)1/α
[α

2
+

1

α− 1
+ log 3

]
+ 1.

For Λnce−α· , we prove that
Theorem 9: For large n

R̂(Λnce−α·) =
log2 n

4α
+O(log c log n).

Remark This result can also be generalized to provide tight
bounds for sub-exponential envelope class considered in [25].

In the next three sections we prove these results.

IV. PROOFS

A. Proof of Theorem 2

For xn1 ∈ Xn, let P̂n(xn1 ) = supPn∈Pn P
n(xn1 ) be the

maximum likelihood (ML) probability of xn1 . Then,

S(Pn) =
∑

xn1∈Xn
P̂n(xn1 ).

By the first part of Lemma 1, it follows that

S(Ppoi(n)) =
∑
n′

poi(n, n′)S(Pn
′
). (2)

By conditioning on xn1 in the expression for S(Pn+1) it is
easy to see that S(Pn) ≤ S(Pn+1).

Therefore,

S(Ppoi(n))
(a)
=
∑
n′≥0

poi(n, n′)S(Pn
′
)

(b)

≥ S(Pn)
∑
n′≥n

poi(n, n′)
(c)

≥ 1

2
S(Pn),

where (a) follows from Equation (2), (b) from monotonicity
of S(Pn) and (c) from the fact that median of a Poisson
distribution close to its mean. Taking logarithms gives the
second part of the theorem.

The first part of the theorem uses (2) again along with tail
bounds on Poisson random variables and is omitted here. It
essentially uses the fact that a poi(n(1− ε)) random variable
exceeds n with exponentially small probability. We omit the
proof due to lack of space.



B. Proof of Theorem 4

For i.i.d. sampling types are a sufficient statistic of the
sequence, namely all sequences with the same type have the
same probability. Let τ(Pn) be the distribution induced by
Pn over types. Let

τ(Pn) = {τ(Pn) : P ∈ P}

be all distributions over types from distributions of the form
Pn. By the second item in Lemma 1, for a distribution P =
(p1, p2, , . . .) over X = {1, 2, . . .}

τ(P poi(n)) = (poi(np1),poi(np2), . . .),

where each coordinate is an independent Poisson distribution.
We first show that the redundancy of sequences is the same

as the redundancy of types.
Lemma 10: R̂(τ(Pn)) = R̂(Pn) and R̂(τ(Ppoi(n))) =

R̂(Ppoi(n)).
Proof: Any i.i.d. distribution assigns the same probability

to all sequences with the same type. Therefore, such sequences
have the same maximum likelihood probability. We show that
the Shtarkov sums of the two classes are the same and hence
they have same redundancy.

S(Pn) =
∑

xn1∈Xn
P̂n(xn1 ) =

∑
τ

∑
xn1 :τ(x

n
1 )=τ

P̂n(xn1 )

=
∑
τ

P̂n(τ) = S(τ(Pn)).

The proof also applies to Poisson sampling.
Under Poisson sampling, the type of a distribution is a tuple

of independent random variables, namely the multiplicities.
In general suppose P be a collection of product (indepen-
dent) distributions over A × B, i.e., each element in P is
a distribution of the form P1 × P2, where P1 and P2 are
distributions over A and B respectively. Let PA and PB be
the class of marginals over A and B respectively. It can be
shown, e.g., [20], that the redundancy of P is at most the sum
of the marginal redundancies.

Lemma 11 (Redundancy of products): For a collection P
of product distributions over A× B,

R̂(P) ≤ R̂(PA) + R̂(PB).

Furthermore, if P = PA × PB then equality holds.
Proof: For any (a, b) ∈ A× B,

sup
(P1,P2)∈P

P1(a)P1(b) ≤ sup
P1∈PA

P1(a) sup
P2∈PB

P2(b).

Now,

S(P) =
∑

(a,b)∈A×B

sup
(P1,P2)∈P

P1(a)P2(b)

≤
∑
a∈A

sup
P1∈PA

P (a)
∑
b∈B

sup
P2∈PB

Q(b) = S(PA)S(PB),

where the inequality follows from the equation above, and
the lemma follows by taking logarithms. When all possible

combinations of marginals is possible, then the inequality
becomes an equality.
The lemma generalizes to more than two product classes.
Similar to the characterization of τ(Ppoi(n)) it follows that

τ
(
Ppoi(n)
f

)
=
{

(poi(λ1),poi(λ2) . . .) : λi ≤ nfi,
∑

λi = n
}
.

Notice that each λi ≤ λmax
i

def
= n · fi, and therefore the

class marginal distributions of element i is a Poisson random
variable with parameter ≤ λmax

i and hence a subset of
POI(λmax

i ). Therefore, Lemma 11 yields

R̂
(
τ(Ppoi(n)

f )
)
≤ R̂ (POI(λmax

1 )) + R̂ (POI(λmax
2 )) + . . .

For the lower bound note for any choice of λi < λmax
i for

i ≥ lf corresponds to a distribution in Ppoi(n)
f . In other words,

all product distributions in

POI(λmax
lf

)× POI(λmax
lf+1)× . . .

are valid projections of a distribution in Ppoi(n)
f along the

coordinates i ≥ lf . Therefore, for the elements along these
coordinates the redundancy of types under Poisson sampling
is determined precisely by Lemma 11.

R̂
(
τ(Ppoi(n)

f )
)
≥ R̂

(
POI(λmax

lf
)
)

+ R̂
(

POI(λmax
lf+1)

)
+ . . . .

Combining these with Lemma 10 proves the theorem.

C. Proof of Lemma 5

The Poisson distribution assigning highest probability to i ∈
N is poi(i). Therefore the ML distribution of j in POI(λ) is

arg max
POI(λ)

P (i) =

{
poi(i) if i ≤ bλc
poi(λ) otherwise.

Using this, the Shtarkov sum of the class is

S
(

POI(λ)
)

=

bλc∑
i=0

e−i
ii

i!
+

∞∑
bλc+1

e−λ
λi

i!

(a)
= 1 +

bλc∑
i=0

(
e−i

ii

i!
− e−λλ

i

i!

)
,

where (a) uses that
∑
µ poi(λ, µ) = 1. Using the second

expression shows the case λ ≤ 1. Using the first along with the
following Stirling’s approximation proves the case of λ > 1.

Lemma 12 (Stirling’s Approximation): For any n ≥ 1,
there is a θn ∈ ( 1

12n+1 ,
1

12n ) such that

n! =
√

2πn
(n
e

)n
eθn .



D. Power-law: Proof of Theorem 8

Proof: By Definition 6, for power-law class Λc·−α ,
λmax
i = cn

iα . Let b def
= (cn)1/α, then λmax

i ≥ 1 for i ≤ b
and λmax

i < 1 otherwise.
Then,

R̂(Λnc·−α)
(a)

≤
∑
i≤b

R̂(POI(λmax
i )) +

∑
i>b

R̂(POI(λmax
i )) + 1

(b)

≤
∑
i≤b

log

(
2 +

√
2λmax

i

π

)
+

∞∑
i>b

log(2− e−λ
max
i ) + 1,

where (a) follows from Theorem 4 and (b) from Lemma 5.
We consider the two summations separately.
For the first term, we note that for λ ≥ 1, 2 +

√
2λ/π <

3
√
λ and use it with the following simplification.

B∑
i=1

log
B

i
= log

BB

B!
≤ B,

which follows from B! > (B/e)B . Therefore,

b∑
i=1

log

(
2 +

√
2λmax

i

π

)
<

b∑
i=1

log

(
3

√
cn

iα

)

= b log(3) +
α

2

b∑
i=1

log
( (cn)

1
α

i

)
(a)
< (cn)1/α

(
log(3) +

α

2

)
,

where (a) follows since b = (cn)1/α.
Taking the second term,
∞∑

i=b+1

log(2− e−λ
max
i )

(a)

≤
∞∑

i=b+1

λmax
i = cn

∞∑
i=b+1

1

iα

=
c1/α

α− 1
n1/α,

where (a) uses ex ≥ 2 − e−x, and (b) follows by using s =
b+ 1 = (cn)1/α + 1 in

∞∑
i=s

1

ir
≤
∫ ∞
s

1

(x− 1)r
≤ (s− 1)1−r

(r − 1)
.

Combining these results proves the theorem.
For the lower bound we only use the terms λmax

i for
j ≥ lf . Using the lower bound on S(POI(λ)) from Lemma 5
and again applying the Stirling’s approximation (lower bound
instead of upper) proves the result. Since the ideas are the
same, we omit the proof.

E. Exponential class: Proof of Theorem 9

Proof: By Definition 7 for Λnce−α· , i ≤
log(cn)
α if and

only if λmax
i ≥ 1. Let b def

= log(cn)
α . Then similar to the proof

of power-law class we derive the two summations and bound
them individually.

Once again for λ > 1, 2 +
√

2λ/π < 3
√
λ. Therefore

b∑
i=1

log

(
2 +

√
2λmax

i

π

)
= b log 3 +

1

2

b∑
i=1

log[cne−αi]

= b log 3 +
1

2

b∑
i=1

α(b− i)

< b log(3) +
b2α

4
.

For the second term, since eαb = cn,
∞∑
i=b

log(2− e−λ
max
i ) ≤

∞∑
i=b

λmax
i =

∞∑
i=b

cne−αi
1

1− e−α
.

Substituting b = log(cn)/α proves the upper bound. Once
again the lower bound is very similar and is omitted.
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