
Sorting with adversarial comparators and
application to density estimation

Jayadev Acharya
ECE, UCSD

jacharya@ucsd.edu

Ashkan Jafarpour
ECE, UCSD

ashkan@ucsd.edu

Alon Orlitsky
{ECE,CSE}, UCSD

alon@ucsd.edu

Ananda Theertha Suresh
ECE, UCSD

asuresh@ucsd.edu

Abstract—We consider the problems of sorting and maximum-
selection of n elements using adversarial comparators. We de-
rive a maximum-selection algorithm that uses 8n comparisons
in expectation, and a sorting algorithm that uses 4n log2 n
comparisons in expectation. Both are tight up to a constant
factor. Our adversarial-comparator model was motivated by
the practically important problem of density-estimation, where
we observe samples from an unknown distribution, and try
to determine which of n known distributions is closest to it.
Existing algorithms run in Ω(n2) time. Applying the adversarial
comparator results, we derive a density-estimation algorithm that
runs in only O(n) time.

I. INTRODUCTION

Sorting and maximum selection are important tasks with
applications in diverse fields ranging from biology to rec-
ommendation systems. For example, in tournaments, the ob-
jective is to select the best team with only a few matches.
In recommendation systems, the goal is to select the most
prominent items with the least number of prior explorations.
Other applications include ranking players on online first-
person shooter games based on pairwise matches and ranking
cars according to popularity based on customer surveys. In
many cases, comparison is the costliest operation.

In the above examples, the outputs of the comparators are
noisy. For example, in a game, the better team may not win.
Motivated by such scenarios, sorting and maximum selection
have received wide attention in several communities. Our
main motivation comes from density estimation, described in
Section III.

The paper is organized as follows. In Section II we discuss
related work. In section III we relate the problem of density
estimation to ranking. In Section IV we discuss the problem
in detail, and in Section V we present our algorithms.

II. RELATED WORK

While the motivation for noisy comparators is universal, the
choice of noise model and the metric of error depends on the
application. Unlike our adversarial model, most of the known
noise models are probabilistic.

[1], [2] consider ranking with noisy comparators when the
inputs have an underlying order and the outcome of each
pairwise comparisons is errorneous with some probability
strictly less than half independently. They propose optimal
algorithms for ranking with and without re-sampling: namely,

whether or not the same pair can be compared again. Under
a similar noise model, [3] propose algorithms for maximum
selection.

[4] consider the popular Bradley-Terry-Luce model for noise
where each input i is associated with a score wi. If two inputs
i and j are compared, the winner is decided by a toss of a coin
with bias wi/(wi+wj). They propose an algorithm to estimate
the underlying scores wi, based on pairwise comparisons.

[5] consider the trade-off between the number of compar-
isons and loss. They show that choosing the comparisons
adaptively decreases the loss significantly.

Suppose that for three inputs a, b, and c, a comparator
outputs a > b, b > c, and c > a, then these inputs cannot
be sorted. If we change one of the outputs, say c > a to
c < a, then the inputs can be sorted. The problem of finding
the minimum number of changes in comparator outputs to
facilitate a ranking is known as feedback arc set problem. [6],
[7], [8] show that solving it exactly is NP hard and propose
efficient algorithms to approximate this number.

III. ADVERSARIAL NOISE MODEL AND DENSITY
ESTIMATION

Unlike most of the above examples, our model is determin-
istic and adversarial. We first provide some motivation.

In density estimation, the objective is to approximate an
unknown distribution based on its samples. More precisely,
given independent samples from an unknown distribution P0

we want to find a distribution P such that |P − P0| =∫
x∈X |P (x)− P0(x)|dx is small.

One of the popular approaches to this problem [9] is to
first use some process, for example Kernel estimation or prior
information, to find a set P of candidate or skeleton distribu-
tions. Then find the candidate distribution that is closest to P0

in `1 norm,

arg min
P∈P
|P − P0|.

[10] considered this problem and proposed an algorithm
called Scheffe tournament. We first discuss their results for the
case |P| = 2, where we need to choose between two possible
distributions.

They constructed an algorithm C that takes k samples and



outputs a distribution P ′ ∈ P such that w.p. 1− δ,

|P ′ − P0| ≤ 3 min
P∈P
|P − P0|+

√
10 log 1

δ

k
.

Observe that this result is independent of the domain of these
distributions, and that as the number of samples k → ∞,
C outputs a distribution that, while may not be necessarily
closest, is at distance at most 3 times that of the closest.

It follows that given enough samples, if the distances
between P0 and the two distributions in P are within a
factor of 3 from each other, the algorithm can output either
distribution, but if the distances are more than a factor of 3
apart, the algorithm will output the closer one. It can therefore
be viewed as a comparator C that takes two distributions Pi
and Pj and outputs

C(Pi, Pj) =


Pi if |Pi − P0| < 1

3 |Pj − P0|,
Pj if |Pj − P0| < 1

3 |Pi − P0|,
arbitary otherwise.

(1)

[10] extended this result for |P| > 2, by running algorithm
C between every pair of distributions in P and outputting the
distribution that wins the most. They showed that this finds a
distribution whose distance from P0 is at most 9 minP∈P |P−
P0|. Note however that this algorithm runs in time O(|P|2)
and faster algorithms are desired.

[11] improved the Scheffe tournament in two ways. They
provided a modification of the minimum distance estimate that
uses the same number, O(|P|2) of comparisons but outputs a
distribution with distance ≤ 3 minP∈P |P − P0|. They also
derived an efficient minimum loss-weight estimate, that uses
only a linear number of computations, assuming that P is
exponentially preprocessed beforehand.

[12], [13], [14] used Scheffe tournament techniques for
learning k-modal distributions, one dimension Gaussian mix-
tures, and d-dimensional Gaussian mixtures respectively. Fur-
thermore, all of them proposed various modifications of the
Scheffe algorithm for improving constants and time complex-
ities. Our algorithm has smaller time complexity than all of
the above mentioned algorithms.

In our model of this problem we relax the condition of
arbitrary output in Equation (1) to adversarial output. Because
adversarial output is more challenging, our results for this
model can be applied to the original one. We compare our
error guarantees to those of the best algorithm over all possible
choices of arbitary cases in Equation (1). This model for error
is also called as the minimax model where minimum is over
all algorithms (strategies) and maximum is over all possible
outcomes.

To simplify our model’s description, we modify Equa-
tion (1) to obtain a comparator for real numbers. Let xi =
− log3 |Pi − P0|, then for xi ∈ R, the comparator outputs

C(xi, xj) =


xi if xi > xj + 1,

xj if xj > xi + 1,

arbitary if |xi − xj | ≤ 1.

(2)

Let n = |P|. After the above changes, the problem of
finding the distribution closest to P0 becomes finding the
maximum element of the set {x1, x2, . . . xn} under the above
noisy comparator C(·, ·). Let xn def

= (x1, . . . , xn).

IV. PROBLEM STATEMENT

A. Noisy comparators and tournaments

Our objective is to minimize the total number of com-
parisons for (i) selecting the maximum and (ii) sorting the
inputs in decreasing order, using the noisy comparator in
Equation (2). Each comparison is referred to as a query and
total number of queries are defined as query complexity.

Comparators can be either noisy or noiseless. Noiseless
comparators are those whose outputs are the maximum of the
inputs. The noisy comparators in our model are described in
Equation (2).

In our model, a noisy comparator can be any comparator
that satisfies the constraints in Equation (2) and is denoted by
C. A set of all possible comparators are shown by C. In the
case of arbitrary output in Equation (2), we allow an adversary
to choose the output. Note that this form of noise is stronger
and more relevant to our problem than the probabilistic noisy
comparators described in Section II.

A natural way to represent a comparator is by a complete
oriented graph called as tournament, where if C(xi, xj) = xi,
then there is a directed edge from xj to xi. In the spirit of our
example on games, we also refer this as xi wins against xj .

Because of the adversarial behavior of the noisy com-
parators, they can induce different tournaments based on our
queries. Given xn, the set of possible tournaments by any
adversarial comparator are termed as possible tournaments.

Our results work for all the possible tournaments and hold
for any probabilistic mix of possible tournaments.

B. Maximum selection

Given n real numbers xn and a pairwise noisy comparator
C, our goal is to find an algorithm A, that compares the inputs
in order to find the maximum or one close by. The output of
A is denoted by YA. Since algorithms can be randomized, YA
is a random variable. The error of the output is

EA
def
= EA(xn) = max(xn)− YA.

We measure the algorithm’s performance by comparing EA
with some threshold t. For an algorithm A a t-approximation
error is defined as

eA(t)
def
= Pr(EA > t).

We are interested in designing algorithms whose eA(t) is
zero or small for a small constant t and all xn and possible
comparators.



C. Sorting

The inputs and comparators for sorting are same as those
of maximum selection. The goal in sorting is to output a
permutation of inputs that are sorted (or almost sorted) in
decreasing order. We use the same notation as before and
denote sorting algorithms also by A. The usage becomes clear
from the context. The output of A is denoted by Y nA which is
a permutation of the inputs. As before, since algorithms are
randomized, Y nA is a random variable. The error of sorting is
defined by the maximum mis-sorting in the output.

EA
def
= EA(xn)

def
= max

i≤j
Yj − Yi

Similar to maximum selection, the t-approximation error is

eA(t)
def
= Pr(EA > t).

V. ALGORITHMS

A. Lower bounds

Before proceeding to the algorithms, we provide simple
lower bounds on EA for both maximum selection and sorting.
Since maximum selection is a subtask of sorting, for any
algorithm sorting error is larger than maximum selection error.

Since the comparator cannot differentiate between 0 and 1,
it is easy to see that for maximum selection, for any A and
t < 1, eA(t) ≥ 1/2. For example, if x2 = (0, 1), then no
algorithm can conclusively find the maximum as the noisy
comparator has error 1. An extension of this result shows that
eA(t) can be non-zero even for t < 2.

Example 1. x3 = (0, 1, 2)

x1

x2x3

Since each of x1, x2, x3 has won against another, no algo-
rithm can conclusively determine the maximum and given all
permutations of (x1, x2, x3), every algorithm makes an error
of 2 w.p. ≥ 1/3 i.e., eA(t) ≥ 1/3 for t < 2. The error 1/3
can be made arbitrarily close to 1, by adding elements with
values 0 and 1 in the above example.

We now consider a set of algorithms and their performance.
Two of these algorithms Quick-select and quick-sort achieve
the lower bounds for maximum selection and sorting respec-
tively. Their query complexities are optimal up to a constant
factor.

We consider the following algorithms for maximum selec-
tion and sorting:
• Scheffe tournament: Motivated by the Scheffe tournament

in [10], we consider the same algorithm for maximum
selection and sorting with noisy comparators. It has
quadratic time complexity and achieves the best error
bound.

• Sequential: A natural way of reducing the time com-
plexity is to sequentially compare elements and keep

the winner. We show that the error guarantee for this
algorithm is unbounded.

• Knock-out: Motivated by sports tournaments, we consider
Knock-out approach, which has linear query complexity.
We show that with high probability E < 3.

• Quick-select: This algorithm is a variant of quick-sort
and its query complexity is 8n. It finds the maximum
with performance similar to the lower bounds described
in the previous subsection.

• Quick-sort: We show that the popular quick-sort has 2-
approximation error guarantee and query complexity of
less than 4n log2 n in expectation.

B. Scheffe tournament

Scheffe tournament compares all pair of inputs and sorts
them depending on the number of wins for each input. Ties are
broken randomly. Note that we are also finding the maximum
element in the process. The algorithm is given in AScheffe.
This algorithm was previously studied in the context of density
estimation [10].

Algorithm AScheffe

input: xn
let Y be an empty set
∀i, j where i 6= j let Y = Y ∪ C(xi, xj)
let mi be the multiplicity of xi in set Y
output: sort inputs based on mi

Lemma 2. The query complexity of AScheffe is n(n−1)
2 and

for noisy comparator C, eAScheffe(2) = 0 for both maximum
selection and sorting.

Proof: We show that for every two inputs xi and xj such
that xi − xj > 2, mi > mj in AScheffe. Clearly, for all k if
C(xj , xk) = xj then C(xi, xk) = xi. Since C(xi, xj) = xi,
we have mi > mj . So xi appears before xj .

The Scheffe tournament has query complexity of Θ(n2).
Note that for noiseless comparators we need only Θ(n)
comparisons for selecting the maximum and Θ(n log n) com-
parisons for sorting.

In the next two subsections we consider two algorithms that
take Θ(n) comparisons and can select the maximum input
in a noiseless model. Both has error worse than the Scheffe
tournament but their query complexity is Ω(n).

C. Sequential Algorithm

To safeguard against possible adversaries, we derive a
randomized algorithm.

Algorithm AS compares first two numbers and keeps the
larger number. The algorithm, then continues to compare the
larger number with a new number till only one number remains
and outputs this number as the maximum.

Observation 3. AS uses n − 1 comparisons and selects
the maximum value without any error if the comparator is
noiseless.



Algorithm AS

input: xn
let X = {x1, x2, . . . , xn}
choose a random y ∈ X and remove it from X
while |X | > 0
choose a random x ∈ X and remove it from X
let y = C(x, y)
end while
output: y

For noisy comparators, we give an example where the
error is unbounded with high probability. More precisely, AS

outputs a number that is m = logn
log logn below the maximum

w.p. close to 1; i.e., eAS(t)→ 1 for all t < m.

Example 4. Suppose n is such that log n, log log n and m =
logn

log logn are integers. Let

xi =


m i = 1
m− 1 i = 2, . . . , log n

m− 2 i = log n+ 1, . . . , log2 n
. . .
0 i = n

logn + 1, . . . , n

Let C be as follows.

C(xi, xj) =

 xi if xi > xj + 1
xj if xj > xi + 1
min(xi, xj) otherwise

The maximum is m, but Pr(YAS = 0) ≥ 1− 1
log logn .

Proof: Consider a random permutation of xn and put
them in a list. AS will compare this list sequentially. Let li
be the last appearance of input with value i. One can show
that li > li+1 w.p. ≥ 1 − 1

logn . By the union bound, w.p.
1 − 1

log logn , l0 > l1 > . . . > lm and because of the form of
comparator, AS outputs 0 with probability ≥ 1− 1

log logn .

Example 4 shows that sequential algorithms have bad per-
formance compare to Scheffe tournament. A natural question
is to ask if there is a linear query complexity algorithm with
bounded error. We answer this question, by considering the
popular format in games, Knock-out algorithm.

D. Knock-out algorithm

The knock-out algorithm or the knock-out tournament is
divided into successive rounds. At each round, each player
plays one game and the winner advances to the next round.
After log n rounds we are left with exactly one winner or the
maximum number in our case.

We modify this algorithm by keeping a fraction of inputs
at each round in an extra set. The algorithm calls Scheffe
tournament when the number of remaining inputs is square-
root of original number of inputs. The algorithm is given in
Algorithm AK.

In the first stage of the algorithm AK runs the Knock-out
tournament, but at each rounds keeps a set of

√
n/ log n inputs.

The first stage ends when X has at most
√
n/ log n inputs.

Algorithm AK

input: xn
let X be the set of inputs and Y be an empty set
while |X | >

√
n/ log n

choose
√
n/ log n of inputs at random and add to Y

pair the elements in X randomly and keep the winners
end while
run the AScheffe on set X ∪ Y

The algorithm then runs Scheffe tournament AScheffe on the
set X ∪ Y . Note that |Y| is kept smaller than

√
n.

Now we discuss the performance of AK.

Observation 5. The number of comparison of the AK is Θ(n).

Lemma 6. eAK(3) ≤ log3 n/
√
n.

Proof: Without loss of generality assume x1 = max(xn).
Note that X has 1

2 log n+log log n rounds while the algorithm
is proceeding. At each step let V be the elements in X such
that their values are ≥ x1− 1. Let W be the elements in final
Y such that their values are ≥ x1 − 1. Define αi = |V|/|X |
at step i. Let α = maxαi. We have

Pr(|W| = 0) ≤ Pr(x1 /∈ Y) < α(
1

2
log n+ log log n).

On the other hand,

Pr(|W| = 0) ≤ (1− α)
√

n
log n .

After maximizing the minimum of these two bounds over α
we have Pr(|W| = 0) < log3 n/

√
n. The rest of the proof is

by using Lemma 2.
By comparing this algorithm with the Scheffe tournament,

we observe that AK has smaller query complexity, but Scheffe
tournament has better error guarantee.

For sorting problem, one can try algorithms such as merge-
sort that is related to AK but we could not find a way for
merging parts without loss of error guarantee.

In the next section we describe our main result which is
an algorithm with optimal number of queries up to a constant
factor for maximum selection problem. While this algorithm
requires 8n expected queries, it has error guarantee same as
Scheffe tournament.

E. Quick-select algorithm

So far in our algorithms, we were comparing the winners
in order to select the maximum. Surprisingly, if we compare
all the elements with a random pivot, the error guarantee gets
better. The algorithm is given in Algorithm Aquick.

The following lemma shows that YAquick is close to max(xn).

Lemma 7. eAquick(2) = 0.

Proof: Without loss of generality assume x1 is the
maximum input. If x1 remains in X then the lemma is true.
Otherwise, x1 is removed from A with some pivot xr where
xr ≥ x1 − 1. At this stage, every remained element in A are
≥ xr − 1 ≥ x1 − 2. Hence the lemma is proved.



Algorithm Aquick

input: xn
let X be the set of inputs
while |X | > 1
choose xr, a random input ∈ X
compare all the inputs in X with xr and keep the winners
if |X | = 0 add xr to X
end while
output: output the remained input in X

Next we show that after comparing elements with a random
pivot, the fraction of remaining elements is at most 3

4 of
the original elements w.p. 1

2 . This is a necessary condition
to bound the running time of this algorithm. Note that for
noiseless comparisons this condition holds.

Consider a complete oriented graph G on n nodes. Let din
v

be the number of ingoing edges of node v.

Lemma 8. For a uniformly randomly chosen node v ∈ G,
din
v ≥ 1

4 (n− 1) w.p. ≥ 0.5.

Proof: The proof is omitted.
By Lemma 8 we have shown that w.p. 1

2 , after comparing
inputs in a set of size n with a random pivot, the number of
remained input is < 3

4 (n− 1).
In the following we bound the expected number of queries

to select the maximum using Aquick. Let f(n) be the expected
number of queries that Aquick uses in order to select the
maximum of n inputs. Using Lemma 8,

f(n) ≤ n+
1

2
f(n) +

1

2
f(

3

4
n).

After solving this recursion we have f(n) ≤ 8n. We did not
put any effort to minimize the constant and a better constant
by optimizing the numbers in Lemma 8 is possible.

F. Quick-sort algorithm

In this section we use quick-sort algorithm, Aquick, with a
noisy comparator to sort the inputs.

Similar to Lemma 7, quick-sort algorithm can sort the inputs
with zero 2-approximation error.

Lemma 9. eAquick(2) = 0.

The following lemma shows that w.p. 1
2 , a random pivot in

quick-sort algorithm, divides the set of inputs into two sets
where the size of each set is greater than a constant fraction
of the primary set.

Lemma 10. For a uniformly randomly chosen node v ∈ G,
1
8 (n− 1) ≤ din

v ≤ 7
8 (n− 1) w.p. ≥ 0.5.

Proof: The proof is omitted.
Using Lemma 10 we can bound the query complexity of

the quick-sort algorithm. let f(n) be the expected number of
comparisons that Aquick requires in order to sort n inputs. Note
that query complexity of the quick-sort for this problem is

different from original quick-sort since comparisons are noisy.

f(n) ≤ n+
1

2
f(n) +

1

2
f(

7

8
n) +

1

2
f(

1

8
n).

After solving this recursion we have f(n) ≤
16

24−7 log2 7n log2 n ≤ 4n log2 n.
[15] shows that the probability of quick-sort algorithm

taking more than fraction c of its expected time, decreases
exponentially with c. Same result for our model of noisy
comparators holds with slightly changes.

VI. DENSITY ESTIMATION

Recall the problem of density estimation, where given a set
P of distributions and an unknown distribution P0. The goal
is to find a distribution P that is closest to P0 in `1 distance
using i.i.d. samples from P0. Quick-select along with the
distribution comparator discussed in III can be used to obtain
a linear time algorithm as opposed to the Scheffe tournament
algorithm [10] that runs in quadratic time.

Theorem 11. Quick-select algorithm uses 8|P| comparisons
in expectation and provides the same guarantee as Scheffe
tournament.
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