
On the Query Computation and Verification of
Functions

Hirakendu Das Ashkan Jafarpour Alon Orlitsky Shengjun Pan Ananda Theertha Suresh

University of California San Diego

{hdas,ashkan,alon,s1pan,asuresh}@ucsd.edu

Abstract—In the query model of multi-variate function compu-
tation, the values of the variables are queried sequentially, in an
order that may depend on previously revealed values, until the
function’s value can be determined. The function’s computation
query complexity is the lowest expected number of queries
required by any query order. Instead of computation, it is often
easier to consider verification, where the value of the function
is given and the queries aim to verify it. The lowest expected
number of queries necessary is the function’s verification query
complexity. We show that for all symmetric functions of indepen-
dent binary random variables, the computation and verification
complexities coincide. This provides a simple method for finding
the query complexity and the optimal query order for computing
many functions. We also show that if the symmetry condition is
removed, there are functions whose verification complexity is
strictly lower than their computation complexity, and mention
that the same holds when the independence or binary conditions
are removed.

I. INTRODUCTION

The worst-case query complexity or decision-tree complex-

ity [2, 3, 4, 5, 8] of a multi-variate function is the number

of function inputs that must be queried in the worst case to

determine the function’s value. For example, the worst-case

query complexity of xy∨xz is 2, as the value of x determines

which of y or z needs to be queried to determine the function’s

value.

A multi-variate function is symmetric if its output remains

unchanged under all input permutations. Many functions en-

countered in engineering and science are symmetric, including

parity, threshold, and delta, as well as most statistical mea-

sures such as median, mode, max, and order statistics. Essen-

tially all results in this paper concern symmetric functions.

It is easy to see, e.g. [6], that the worst-case query complex-

ity of all non-constant symmetric functions is n. Kowshik and

Kumar [7] recently considered the expected query complexity

of computing symmetric functions. For expected complexity,

the optimal query order depends not only on the function, but

also on the underlying distribution. They found an optimal

query order for threshold functions of independent Ber(pi)
random variables. In particular, they showed that for these

functions the optimal query order does not depend on the

precise probabilities pi, but only on which is largest, second

largest, etc.

To simplify and extend arguments for finding the optimal

query order, [1] defined the expected verification query com-

plexity of a function to be the lowest expected number of

inputs that need to be revealed to convince an observer of the

value of the function. For example, consider the OR function

X1 ∨ . . . ∨ Xn, where each Xi ∼ Ber(pi) independently of

each other. To verify that the OR is 1, it suffices to show that

one of the Xi’s is 1, hence for moderate values of the pi’s,

the expected number of variables that need to be revealed is

small, whereas verifying that the OR is 0, requires checking

that all variables are 0, hence all n variables must always

be queried. Note that verification complexity differs from

certificate complexity [5, 2], where all input values are known

in advance and can be used to determine the optimal query

order.

Verification complexity was used in [1] to provide a simpler

proof that the query order for computing threshold functions

presented in [7] is optimal, to derive an optimal query order

for computing delta functions, and, observing that the value

of all binary-input symmetric functions depends only on the

number of ones or weight of the input, to find an optimal

query order for symmetric functions that vary over any three

consecutive input weights.

In this paper, we extend the results in [1] and show that

for all symmetric functions of independent binary inputs,

optimal expected verification and computation complexity are

equal. The symmetry, independence, and binary conditions are

necessary in the sense that if any of them is relaxed then there

are functions whose expected verification complexity is strictly

lower than their expected computation complexity.

The rest of the paper is organized as follows. In Section II,

we formally define the problem of computation and verifica-

tion. In Section IV, we show the equality of verification and

computation for general symmetric functions of independent

binary inputs. In Section V, we give an example of a non-

symmetric function of independent binary inputs where the

verification and computation complexities differ. Similar ex-

amples showing that the independence and binary assumptions

are necessary will be provided in the paper’s full version.

II. NOTATION AND FORMULATION

Throughout the paper, we assume that f is a symmetric

function of n independent binary random variables

X1, X2, . . . , Xn, where Xi ∼ Ber(pi) and the pi’s
are known in advance, and without loss of generality,

1 > p1 ≥ p2 ≥ . . . ≥ pn > 0. We also let p̄i
def
= 1 − pi and

Xj def
= X1, . . . , Xj .

To compute f(xn), we query the inputs sequentially. A

policy P is a rule that at any given time, based on prior

2012 IEEE International Symposium on Information Theory Proceedings

978-1-4673-2579-0/12/$31.00 ©2012 IEEE 2711

query outcomes, determines whether querying should stop or

continue, and in the latter case, which input should be queried

next. Once an input is queried, its full value is revealed. P
computes f , if for all xn, when P stops querying, f can be

determined.

Let N(xn) be the number of inputs a policy P queries for

input xn. The expected query complexity of P is

C(P) def
= E[N(Xn)] =

∑
xn∈{0,1}n

P (xn)N(xn),

and the computation complexity of f is

C(f)
def
= min

P
C(P),

where the minimum is taken over all policies computing f .

Any policy for f with complexity C(f) is called optimal. In

general, there might be several optimal policies.

Example 1: Consider the threshold function

Πθ(x) =

{
1 if x ≥ θ,

0 otherwise,

and let f(X1, X2) = Π1(X1 +X2). If Xi is queried first, the

expected number of queries is 1 · pi + 2 · (1 − pi) = 2 − pi.
Since we assume p1 ≥ p2, the policy querying X1 first is

always optimal. �
For general functions, it is possible to express the computa-

tion complexity in terms of the input probabilities and optimize

the query order. But since the possible number of policies is

exponential in n, the problem may not be easy to solve for all

functions.

An alternative approach for this problem was proposed

in [1]. Instead of finding the optimal policy for computing a

function, the simpler problem of finding an optimal policy for

verifying the function’s value was considered. It was shown

that for a class of functions, the two policies coincide.

In the verification of a function f , we are given the value of

f(xn), and are asked to query the inputs to verify that this is

indeed the function’s value. As with computation, we apply a

policy that determines which input variable to query and when

to stop, the value of the function can be determined. But the

difference is that now we can use different policies based on

the value of f(xn). It is therefore easy to see that a verification
policy is just a collection of computation policies, one for each

value of f(xn), and the advantage of verification is that for

each value of f we can choose a policy that minimizes the

expected number of queries for the given value of f(xn).
The difference between verification and computation com-

plexity is perhaps easiest to demonstrate via a non-symmetric

function of dependent random variables.

Example 2: Let f : {0, 1}n → {1, ..., n} be such that

f(xn) = i iff xi = 1 and all other xj’s are 0. And let Xn

be distributed such that for all 1 ≤ i ≤ n, Xi = 1 and

all other Xj’s are 0 with probability 1/n. For example, for

n = 3, P (100) = P (010) = P (001) = 1/3, and f(100) = 1,

f(010) = 2, and f(001) = 3.

It is easy to see that for computation we need to query

the n variables till we find one whose value is 1, hence the

expected computation complexity is (n+1)/2. By contrast, for

verification, we are told the value j of f(xn) and just need to

verify that Xj = 1, hence the expected verification complexity

is 1.

Note f is not symmetric, and the Xi’s are dependent,

we have relaxed the symmetry and independence conditions

as the point of the paper is to show that with them, the

computation and verification complexities coincide. �
For a more precise definition, the expected query complexity

of policy P when f(Xn) = j is

C(P|f = j)
def
= E[N(Xn)|f(Xn) = j]

=

∑
xn:f(xn)=j P (xn)N(xn)

P (f(Xn) = j)
,

and the verification complexity of f when f(Xn) = j is the

smallest expected number of bits that need to be queried to

verify the value of f when f(Xn) = j.

Vj(f)
def
= min

P
C(P|f = j),

where the minimum is taken over all policies that verify the

value j of f . It is easy to see that the minimum can be

equivalently taken over all policies computing f .

The minimum expected verification query complexity or

simply verification complexity of f is therefore

V (f)
def
=

∑
j

Vj(f)P (f(Xn) = j).

An optimal verification policy is one whose expected query

complexity is V (f). As with its computation counterpart, f
may have several optimal verification policies.

Since computation is one way of verification, or equiv-

alently, since a verification policy is a set of computation

policies, one for each value of f , we see that the verification

complexity is at most the computation complexity.

Observation 3: For all f , V (f) ≤ C(f). �
In Section IV we show that for all symmetric functions of

independent binary inputs, V (f) = C(f).

III. PRELIMINARY OBSERVATIONS

Recall that symmetric functions of binary variables are

determined by the input weight w(xn)
def
=

∑n
i=1 xi. Divide

the range [0, n] of possible weights into contiguous intervals

over which the function is constant. The following observation

shows that when a policy computing a function stops, the value

of the function is constant in a possible interval.

Observation 4: If for an input xn a policy stops after

querying n0 zeros and n1 ones, then w(xn) can take any

value in the contiguous interval [n1, n − n0]. Furthermore, if

the policy computes f , then f(xn) is constant for all xn with

weight in this interval.

Proof: After querying n0 0’s and n1 1’s,
∑

i xi can

take any value in the range [n1, n − n0], depending on the

2712

values of the unknown inputs. Since when the policy stops,

the value of the function is determined, regardless of the

unknown inputs, f(xn) must be the same for all inputs with

w(xn) ∈ [n1, n− n0]. �
The interval indicator function of f is the function g :

[0, n]→ [1, n+ 1], defined by g(0)
def
= 1 and

g(i+ 1)− g(i)
def
=

{
0 if f(i+ 1) = f(i),
1 if f(i+ 1) �= f(i).

g(x) indicates which f -interval x belongs to. We divide

intervals into two types. An interval is large if its length is at

least n+1
2 and it is small otherwise.

Next observe that f and g have the same computation

complexity.

Observation 5: For every symmetric function f of indepen-

dent binary variables,

C(f) = C(g).

Proof: For any function f , the value of g determines the

value of f , hence any policy computing g also computes f ,

and C(f) ≤ C(g). Conversely, while the value of f may

not determine the value of g, e.g., for the parity function, by

Observation 4, when the value of f is determined, the weight

xn lies in a known interval over which f is constant, and

hence g is determined as well, and C(g) ≤ C(f). �
Following observation compares the verification complexi-

ties of f and g.

Observation 6: For any symmetric function f of indepen-

dent binary variables,

V (g) ≤ V (f).

Proof: Recall that verification policy for f is a collection

of computation policies one for each value of f(Xn). Since

g determines f , the number of computation policies in g
is larger, and hence a verification policy for f is also a

verification policy for g. �
Combining the above results, we obtain

Corollary 7: For all symmetric functions f of independent

binary random variables,

V (g) = V (f) = C(f) = C(g).

Proof: From Observations 3, 5, and 6,

V (g) ≤ V (f) ≤ C(f) = C(g).

Our main result, Theorem 14, shows that for all symmetric

functions f of independent binary random variables,

V (g) = C(g), and the corollary follows. �
In general, verification complexity appears to be easier

to determine than computation complexity, and verification

complexity of the interval indicator functions seems easier

to determine than the verification complexity of symmetric

functions. Hence in the rest of the paper we consider only the

verification complexity of interval indicator functions.

IV. EQUALITY OF VERIFICATION AND COMPUTATION

QUERY COMPLEXITY FOR SYMMETRIC FUNCTIONS OF

INDEPENDENT BINARY INPUTS

We now prove the equality of verification and computation

complexities of symmetric functions of independent binary

inputs. Based on the size of the intervals, we find the inputs

which can be queried first. We then show that no matter what

the value of the function is, there are some inputs that can be

queried first in an optimal verification policy.

To achieve this goal, in Lemma 12 we consider optimal

verification policy when the weight of the inputs belongs

to large interval and we find some inputs that one of them

can be queried first in an optimal verification policy. In

compare, when the weight of the inputs belongs to small

interval, Lemma 13 finds some inputs that any of them can

be queried first in an optimal verification policy. Combination

of these two lemmas help us to find an input that can be

queried first in an optimal verification policy for all values of

function. Lemmas 9 and 10 are the main parts of the proof of

Lemmas 13 and 12 which will be stated later. We begin with

an observation.

Let Ij def
= {x|g(x) = j} be the jth interval of the function

g. Then Ij can be written as [sj , ej] where sj and ej are the

interval’s start and end points. Define,

gj(x) =

⎧⎨
⎩

1 if x < sj ,
2 if sj ≤ x ≤ ej ,
3 if x > ej .

The following observation shows equality of verification of

gj(X
n) = j and verification of g(Xn) = j.

Observation 8: A policy verifies g(Xn) = j iff it verifies

gj(X
n) = 2.

Every policy starts by querying a fixed input Xi and the next

query is a function of the value of Xi. An optimal policy is

called second-input-fixed if the second input queried is some

fixed Xj independent of the value of Xi. Suppose there is

a function for which there exists a second-input-fixed policy,

that queries some two inputs Xi and Xj . Using the fact that

the pi’s are sorted and the function is symmetric, we show

in the following lemma that for any index k between i and j
there exists an optimal policy that queries Xk first.

Lemma 9: Let Popt be a second-input-fixed optimal policy

that queries Xi and Xj as the first two inputs. Then for any

k between i and j (inclusive), there exists an optimal policy

that queries Xk first.

Proof: Figure 1 describes Popt to compute the value of g or

to verify a specific value of g. Let Popt,1,Popt,2, and Popt,3

be policies followed after querying of Xi and Xj , depending

on the values observed. Since the function is symmetric, in

the case when Xi +Xj = 1, the same policy works.

Xi

Xj Xj

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3

︸ ︷︷ ︸

0 1

0 1 0 1

Figure 1

2713

Without loss of generality we assume that i < j. For any

k ∈ [i, j], consider four policies that query Xk first. They are

shown in Figure 2.

Xk

Xi Xi

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3

︸ ︷︷ ︸

Xk→Xj Xk→Xj Xk→Xj

0 1

0 1 0 1

P1

Xk

Xi Xj

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,2 Popt,3

Xk→Xj Xk→XjXk→Xi Xk→Xi

0 1

0 1 0 1

P2

Xk

Xj Xi

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,2 Popt,3

Xk→Xi Xk→XiXk→Xj Xk→Xj

0 1

0 1 0 1

P3

Xk

Xj Xj

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3

︸ ︷︷ ︸

Xk→Xi Xk→Xi Xk→Xi

0 1

0 1 0 1

P4

Figure 2

We briefly explain the four policies above. The first policy

queries Xk and then Xi. It then follows Popt and queries Xj

when Popt requires querying Xk. In the second policy Xk is

queried first, and depending on its value we query Xi or Xj

and follow Popt. When Popt requires querying Xk, we query

one of Xi and Xj that has not been queried. The remaining

two policies are similarly described.

We now describe the expected query complexities of the

various policies described above and then show that at least

one of the four policies defined performs as well as Popt.

Using the linearity of expectation we have

C(Popt) =p̄ip̄j(a00p̄k + b00pk) + p̄ipj(a01p̄k + b01pk)+

pip̄j(a01p̄k + b01pk) + pipj(a11p̄k + b11pk),

where ar,t and br,t are non-negative numbers depending on

the structure of Popt, for r, t ∈ {0, 1}, independent of pi, pj
and pk. The complexity of the four policies defined can be

written as,

C(P1) =p̄kp̄i(a00p̄j + b00pj) + p̄kpi(a01p̄j + b01pj)+

pkp̄i(a01p̄j + b01pj) + pkpi(a11p̄j + b11pj),

C(P2) =p̄kp̄i(a00p̄j + b00pj) + p̄kpi(a01p̄j + b01pj)+

pkp̄j(a01p̄i + b01pi) + pkpj(a11p̄i + b11pi),

C(P3) =p̄kp̄j(a00p̄i + b00pi) + p̄kpj(a01p̄i + b01pi)+

pkp̄i(a01p̄j + b01pj) + pkpi(a11p̄j + b11pj),

C(P4) =p̄kp̄j(a00p̄i + b00pi) + p̄kpj(a01p̄i + b01pi)+

pkp̄j(a01p̄i + b01pi) + pkpj(a11p̄i + b11pi).

Now we compare the complexity of the new four policies with

the original optimal policy by subtracting C(Popt) out of them.

After simplifying, we have

C(P1)−C(Popt)= p̄i(pj−pk)(b00−a01)+pi(pj−pk)(b01−a11),

C(P2)−C(Popt)= p̄i(pj−pk)(b00−a01)+pj(pi−pk)(b01−a11),

C(P3)−C(Popt)= p̄j(pi−pk)(b00−a01)+pi(pj−pk)(b01−a11),

C(P4)−C(Popt)= p̄j(pi−pk)(b00−a01)+pj(pi−pk)(b01−a11).

By assumption, p’s are sorted in decreasing order and so

pi ≥ pk ≥ pj . If any of the pi, pj , and pk are equal, the

lemma is trivial. So we assume that they are all different.

Using these assumptions, one can see that either all of the

above four quantities should be zero or at least one of them

is negative. Therefore, at least one of these four policies

performs as well as the optimal policy. �
Now consider an optimal policy that queries Xi first and

then queries Xj or Xk depending on whether Xi = 0 or

Xi = 1. Such a policy is defined as second-input-varies. For

given Xi, Xj , Xk the middle index is the median of i, j, k.

The corresponding X is called the middle input.

Lemma 10: For the second-input-varies policy defined

above, there exists an optimal policy that queries the middle

input of {Xi, Xj , Xk} first.

Proof: The proof is omitted due to lack of space. �
Let nmin

j be the minimum number of inputs that need to

be queried in order to compute g, when
∑

i Xi ∈ Ij . The

following lemma relates nmin
j to g.

Lemma 11: nmin
j = n− |Ij |+ 1.

Proof: From Observation 4, we conclude that g(x) = j for

j ∈ [n1, n − n0], where n0 is the number of queried 0’s and

n1 is the number of queried 1’s. Hence, [n1, n − n0] ⊂ Ij .

Therefore, n−n0−n1+1 ≤ |Ij |. Equality is achieved, when

[n1, n− n0] = Ij . �
Recall that we divided intervals into two typed of small and

large intervals. We prove two following lemmas regarding the

first queried input in an optimal policy when the input weight

lies in a small or large interval.

Lemma 12: Suppose
∑

i Xi belongs to a large interval with

size L. There exists an optimal policy to verify the value of

g that queries some Xi first, i ∈ [n− L+ 1, L].
Proof: Let j be the index of the interval such that x ∈ Ij .

By Lemma 8, we can consider the function gj(x) instead of

g(x). The proof is based on induction on n. Let Ln,L =
[Xn−L+1, XL]. We use threshold functions as the base for

induction. Depending on the position of the interval, we

consider two cases. In the first case, we use a threshold

function which has a jump at L as the base for induction.

The goal is to show that
∑

i Xi ∈ [0, L − 1]. In [1], it has

been shown that any one of [XL, Xn] can be queried first in

an optimal policy. Hence, XL ∈ Ln,L. In the second case, we

use a threshold function with jump at n− L+ 1 as the base.

The goal is to show that
∑

i Xi ∈ [n − L + 1, n]. In [1] it

has been shown that there exists an optimal verification policy,

which queries Xn−L+1 first.

For induction, suppose the lemma is true for any function,

g′ with n′ = n − 1 inputs. Further, suppose that gj is not a

2714

threshold function. By using Lemma 11 at least n − L + 1
inputs need to be queried. Since it is not a threshold function,

L < n and at least two inputs need to be queried.

Let Popt be an optimal policy, which queries Xi first. If

Xi ∈ Ln,L then the induction is complete. If Xi /∈ Ln,L, then

either i > L or i < n − L + 1. We first consider the case,

when i > L. By induction, there is an optimal policy P ′opt,
that chooses one of Ln−1,L as the second input. Either the

policy P ′opt is second-input-fixed or second-input-varies. We

consider them separately.

If the policy is second-input-fixed, then Xj ∈ Ln−1,L. By

Lemma 9, any one of [Xj , Xi] can be queried first in an

optimal policy and [Xj , Xi]∩Ln,L �= ∅. If the policy is second-

input-varies and suppose it queries Xj if Xi = 0, and Xk if

Xi = 1, such that Xj , Xk ∈ Ln−1,L. Then, by Lemma 10,

there exist an optimal policy which queries the middle input

of {Xi, Xj , Xk} first. That input belongs to the set Ln,L.

The proof for the case i < n− L+ 1 is very similar. �
Lemma 13: Suppose

∑
i Xi belongs to a small interval

with size l, then querying any one of [Xl, Xn−l+1] first, is

optimal.

Proof: Proof is by induction and it is similar to the proof

of Lemma 12. �
The following theorem is the main result of the paper. It

states that there exists an optimal verification policy that is

also an optimal computation policy for all symmetric functions

of independent binary inputs.

Theorem 14: C(g) = V (g).
Proof: Let Aj denote the set of inputs that can be queried

first in some optimal verification policy, when
∑

i Xi ∈ Ij .

Except Πn+1
2
(x) for odd n, all other symmetric functions

have at most one large interval. The above theorem is proved

for these exceptions in [1]. So in the rest of the proof we

assume that there is at most one large interval. Let L and

M be the size and index of one of the longest intervals

(and observe that such an interval may not be large by our

definition). Let l and i denote the size and index of an interval

other than IM . We consider the following two cases, based

on the size of the longest interval.

Case 1: L ≥ n+1
2

By Lemma 13, we have,

l < n+1
2 =⇒ [Xl,Xn−l+1] ⊂ Ai =⇒ [Xn−L+1,XL] ⊂ Ai.

In addition, by Lemma 12, [Xn−L+1, XL] ∩ AM �= ∅. As a

result,
⋂

j Aj �= ∅, which implies that there is an input that

can be queried first in all optimal policies for different values

of g. After the first query, the similar argument can be used

for the rest of the inputs. Hence, one can track one of the

optimal verification policies without the knowledge of the

function value. As a result, C(g) = V (g).
Case 2: L < n+1

2AM = [XL, Xn−L+1] and AM ⊂ Ai. So AM ⊂ ⋂
j Aj . The

rest of the proof is similar to that of case 1. �
From the proof of the theorem, it is clear that, when all

the intervals are at most n+1
2 , the set of inputs which can be

queried first in an optimal verification policy is independent

of the value of g. This result by itself can be used to find

an optimal policy for several functions, whose their longest

interval is small interval.

V. NON-SYMMETRIC FUNCTIONS

In the previous section we showed that all symmetric func-

tions of independent binary variables have the same computa-

tion and verification complexity. The symmetry, independence,

and binary conditions are necessary in that if any of the

conditions is relaxed, there are functions whose verification

complexity is strictly lower than their computation complexity.

We show the result for the symmetry condition and leave the

other two conditions for the full version of the paper.

Example 15: Let X1, X2, and X3 be independent

Ber(12), and consider the following non-symmetric function

f(X1, X2, X3),
X1X2X3 000 001 100 110 011 111 010 101

f(X3) 1 1 2 2 3 3 4 4

The computation complexity is,

V (f) =
∑
j

Vj(f)P (f(Xn) = j) =
2

4
+

2

4
+

2

4
+

3

4
=

9

4
.

The first three terms correspond to function values 1, 2, and

3, each occurs with probability 1/4. In each of these cases,

the function value can be verified by querying exactly two

inputs. The fourth term corresponds to function value 4. In

that case, querying all the three inputs is necessary to verify

the value of the function. On the other hand, it can be shown

that the computation complexity is 10
4 . �

REFERENCES

[1] J. Acharya, A. Jafarpour, and A. Orlitsky, “Expected

Query Complexity of Symmetric Boolean Functions,”

Allerton Conference, 2011, pp. 26-29.

[2] S. Arora and B. Barak, “Computational Complexity: A

Modern Ap- proach,” 1st ed. New York, NY, USA: Cam-

bridge University Press, 2009.

[3] K. J. Arrow, L. Pesotchinsky, and M. Sobel, “On par-

titioning of a sample with binary-type questions in lieu

of collecting observations,” Journal of the American
Statistical Association, vol. 76, pp. 402-409, 1981.

[4] Y. Ben-Asher and I. Newman, “Decision trees with

boolean threshold queries,” Journal of Computer and
System Sciences, vol. 51, pp. -, 1995.

[5] H. Buhrman and R. de Wolf, “Complexity measures and

decision tree complexity: A survey,” Theoretical Computer
Science, vol. 288, p. 2002, 1999.

[6] A. K. Dhulipala, C. Fragouli, and A. Orlitsky, “Silence-

based com- munication,” IEEE Transactions on Informa-
tion Theory, vol. 56, pp. 350-366, January 2010.

[7] H. Kowshik and P. R. Kumar, “Optimal ordering of trans-

missions for computing boolean threshold functions,” in
Proceedings of IEEE Symposium on Information Theory,

2010, pp. 1863-1867.

[8] I. Wegener, “The complexity of Boolean functions,” New

York, NY, USA: John Wiley & Sons, Inc., 1987.

2715

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

