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Abstract

We propose a test that takes random samples
drawn from a monotone distribution and de-
cides whether or not the distribution is uni-
form. The test is nearly optimal in that it
uses at most O(n

√
log n) samples, where n

is the number of samples that a genie who
knew all but one bit about the underlying
distribution would need for the same task.
Conversely, we show that any such test would
require Ω(n

√
log n) samples for some distri-

butions.

1 INTRODUCTION

Many a lively debate rages over whether some quantity
grows with a possibly related parameter, or is indepen-
dent of it: cancer prevalence vs. radiation exposure;
diabetes onset rate vs. age; flu frequency vs. (nega-
tive) temperature; heart attacks vs. stress; recovery
speed vs. drug dosage; product failures vs. time from
manufacture; taxes or education level or (negative) in-
carceration rate vs. income; gender vs. salary; party
affiliation vs. income or age; grades vs. preparation
time; quality vs. cost; and finally, age before beauty.

We propose a test that takes random samples gener-
ated by a monotone distribution and decides whether
or not the distribution is uniform. The test is near op-
timal in the following sense. A genie who knew the
underlying distribution, could clearly decide if it is
uniform or not without any samples. We show that
if a genie who knew all but one (specific) bit about
the underlying distribution would require n samples
to decide on uniformity, then our test will require at
most O(n

√
log n) samples to make the same decision.

We also show that Ω(n
√

log n) samples are necessary.

In general, the parameter of interest can be discrete
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(income) or continuous (temperature) and can assume
different ranges. However, every monotone distribu-
tion over a finite continuous interval, and every mono-
tone discrete distribution over a finite domain, can
be converted to an equivalent monotone distribution
over [0, 1). For example, the monotone distribution
p(2) = 0.6, p(4) = 0.3, p(7) = 0.1, can be converted to
0.6·1[0,1/3)(x)+0.3·1[1/3,2/3)(x)+0.1·1[2/3,1)(x). Hence
we consider probability density functions, or distribu-
tions for short, over [0, 1). Monotone distributions
over infinite ranges can be similarly analyzed and will
be addressed in the full version of this paper.

Over [0, 1), the distribution u(x) = 1 is uniform. A
distribution f is monotone if for all x < y < z,
(f(y)− f(x)) · (f(z)− f(y)) ≥ 0. Note that monotone
distributions can be either increasing or decreasing.

Let M be the collection of monotone distributions,
and M− = M − {u}, the collection of monotone
non-uniform distributions. We would like to decide
whether a distribution f ∈M is uniform or not based
on independent samples it generates.

A test is a mapping t : [0, 1]∗ → {uni, non} declaring
whether the observed samples are believed to be gener-
ated by a uniform or a non-uniform distribution. The
error probability of t for f ∈M based on n samples it
generates is

P te(f, n)
def
=

{
P (t(Xn) = non), if f = u,

P (t(Xn) = uni), if f ∈M−,

where Xn = X1, . . . , Xn are samples distributed inde-
pendently ∼ f .

As in several recent works, we are mostly interested in
the sample complexity, the number of samples required
to achieve a certain error. For a distribution f ∈M−,
test t, and error ε > 0, let

N t
ε (f)

def
= min {n : P te(f, n) < ε and P te(u, n) < ε}

be the smallest number of samples for which t has er-
ror < ε for both f and the uniform distribution. We
require t’s error to be small for both f and u as a
trivial test achieves 0 error for just one of them.
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The smallest number of samples required by any test
to achieve error probability < ε for f ∈ M− and u is
therefore,

N∗ε (f)
def
= min

t
{N t

ε (f)}.

The test achieving the minimum is denoted t∗.

Example 1. For δ > 0, let

f(x) =

{
1 + δ if x ∈ [0, 12 ),

1− δ if x ∈ [ 12 , 1).

Since both f and u are constant over [0, 12 ) and [ 12 , 1),
all the information Xn conveys about f and u is con-
tained in M = |{i : Xi <

1
2}|, the number of samples

in [0, 12 ). If the underlying distribution is u, then
M ∼ Bin( 1

2 , n), with expected value 1
2n and stan-

dard deviation 1
2

√
n. If the underlying distribution

is f , then M ∼ Bin( 1
2 (1 + δ), n), with expected value

1
2 (1 + δ)n and standard deviation 1

2

√
(1− δ2)n.

Consider the test t that decides uni if M < 1
2 (1 + δ

2 )n
and non otherwise. The test errs only if M strays
from its mean by > n δ2 , namely by roughly δ

√
n stan-

dard deviations. If n > C 1
δ2 , then the error prob-

ability will be small, showing that for any fixed ε,
N∗ε (f) ≤ N t

ε (f) = O( 1
δ2 ).

For the lower bound, observe that if n � 1
δ2 , then the

difference between the means of M when sampled un-
der f and u will be significantly smaller than a stan-
dard deviation, and no test will distinguish the two
alternatives. Hence N∗ε (f) = Ω( 1

δ2 ), and therefore
N∗ε (f) = Θ( 1

δ2 ). This argument is of course just intu-
itive. A rigorous proof is based on Equation (1) and
computes the `1 distance between the two binomial dis-
tributions.

Clearly, the closer f gets to u, the larger N∗(f) be-
comes. Previous approaches to this problem have
therefore considered the sub-collection Mδ ⊆ M of
all monotone distributions whose `1 distance from u
is at least δ. (Daskalakis et al., 2011) showed that a
test similar to t in the last example satisfies N t

ε (f) =
O( 1

δ2 ) for all f ∈ Mδ, and that for some f ∈ Mδ,
N∗ε (f) = Ω( 1

δ2 ). Therefore the highest sample com-
plexity of any distribution in Mδ is Θ( 1

δ2 ). However,
the next example shows that some Mδ distributions.
have a far lower complexity.

Example 2. Let f(x) = δ
2∆(x) + (1 − δ

2 ). where
∆(x) is Dirac Delta function. Clearly `1(f, u) = δ.
Consider the test that declares non if a sample at
x = 0 is observed, and uni otherwise. For the
uniform distribution u, the test errs with probabil-
ity 0, and to ensure that for f it errs with proba-
bility ≤ 1/3, we need 1

3 ≥ (1 − δ
2 )n. Namely n =⌈

− log 3/ log(1− δ
2 )
⌉
≤
⌈
2δ−1 log 3

⌉
samples suffice. It

can be easily shown that roughly this number is also
necessary, hence N∗ε (f) = Θ(1

δ ).

The two examples show that the `1 distance of f from
u is not an accurate measure for the number of sam-
ples needed to test its uniformity, and in particular
that some distributions in Mδ can be tested for uni-
formity using much less than Θ( 1

δ

2
) samples. They

also show that achieving N∗ε (f) may require advance
knowledge of f as the test may depend on the under-
lying distribution.

In this paper we derive a test that performs almost
as well as possible, not just for the worst distribution
in a subclass of M, but for every distribution in M.
Its performance for every underlying distribution ap-
proaches that of the best test designed with knowledge
of all but one (albeit carefully chosen) bit about the
underlying distribution.

Specifically, if a genie knew the underlying monotone
distribution, it could determine whether the distribu-
tion is uniform or not without any samples at all. We
show that if the underlying distribution is f , and a
very knowledgeable genie, who knew that the under-
lying distribution was either f or u but did not know
which, in a sense missing just a single bit about the
distribution, then if that genie needed n samples to de-
termine whether the distribution was uniform or not,
our test, designed of course without knowledge of f ,
would require at most O(n

√
log n) samples.

Before formally stating the results, note that for many
data-based decision problems, including this one, once
an error probability ε < 1/2 is achieved, one can re-
peat the test several times and take the majority of all
decisions, resulting in an error diminishing exponen-
tially fast in the number of repetitions. Specifically,
if we repeat the test on T independent data sets, it
can be easily shown that the error probability of the

combined test is at most 1
2 (4ε(1− ε))T/2.

For simplicity therefore we consider the number of
samples needed to get error probability < 1/3. Any
other desired error can be achieved by repeating the
experiment a constant number of times. For f ∈ M−
and test t, let

N t(f)
def
= N t

1/3(f),

and

N∗(f)
def
= N∗1/3(f),

be the number of samples that t, and the best test,
need to have error probability < 1/3.

We design a single test tc that is nearly optimal re-
gardless of the underlying distribution. Namely, for
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every f ∈M−

N c(f) ≤ O
(
N∗(f) ·

√
logN∗(f)

)
.

We also show that this extra factor is necessary. More
precisely, for every test t, there is a f ∈M− such that

N t(f) = Ω
(
N∗(f) ·

√
logN∗(f)

)
.

Two observations are in order. First, all uniformity
tests make some inherent assumption about the under-
lying distribution. For example, the test (Daskalakis
et al., 2011) for distributions in Mδ assumes that the
tested distribution is either uniform or in Mδ. If
the distribution is not in these two classes, namely
0 < `1(f, u) < δ, then the test’s performance is
not guaranteed. Similarly, for our problem, if n =
o(N∗(f)

√
logN∗(f)), then there is no guarantee on

the performance of tc. In fact, we show that in that
case, for sufficiently large n, tc outputs uniwith prob-
ability at least 2

3 .

Second, with the stated number of samples, tc has er-
ror ≤ 1/3. If a smaller error ε is desired, then as above,
the number of samples can be multiplied by 17 ln 1

ε .
Note however that in that case, we would be compar-
ing 1/3 error for the genie with ε error for tc. If we
required the genie to achieve ε error too, the depen-
dence on ε in the constant will decrease and perhaps
vanish.

2 RELATED WORKS

The statistics literature offers various uniformity tests,
see (Woodroofe and Sun, 1999) and references therein.
The computer science community has considered the
problem more recently, typically addressing discrete
distributions. Without loss of generality, assume the

underlying distribution is over [k]
def
= {1, 2, . . . k}.

(Paninski, 2008) showed that testing if the distribution
is uniform or ε far away from uniform in `1 distance,

requires Θ
(√

k
ε2

)
samples.

(Batu et al., 2004) showed that testing if the distri-
bution is monotone or far from all monotone distri-
butions in `1 distance requires Õ(

√
k) samples, where

the implied constant is an inverse polynomial in the
`1 distance. They also showed that testing if two
monotone distributions are close in `1 distance requires
O(polylog(k)) samples.

(Daskalakis et al., 2011) extended these results to
m-modal distributions. In particular, they showed
that testing if a monotone distribution equals a pre-
specified distribution requires O(

√
log k log log kε−2.5)

samples and the dependence on k is optimal up to a
O(log log k) factor.

Although not directly related to this paper, multi-
dimensional distributions were considered as well.
(Rubinfeld and Servedio, 2009) showed that testing
whether a monotone distribution over the n dimen-
sional boolean hypercube {−1, 1}n is uniform or far

from uniform in `1 distance, requires Θ̃(n) samples,

where Θ̃ represents Θ with possible poly-logarithmic
factors. Similarly, (Adamaszek et al., 2010) showed
that testing uniformity of monotone distributions over
the continuous [0, 1]n hypercube requires Θ̃(n/ε2) sam-
ples.

All the above results consider the sample complexity
of the worst distribution in a class. A different, com-
petitive, approach that compares the performance for
each distribution to the best possible, was considered
as well.

(Acharya et al., 2011) and (Acharya et al., 2012) con-
sidered closeness testing, where we would like to de-
termine whether two sequences are drawn from the
same or from different distributions, and classification
where we are given two training sequences generated
by unknown distributions and would like to determine
which of the two distributions generated a new test se-
quence. For both problems, they proposed tests that
require Õ(n3/2) samples, where n is the number of
samples required by the optimal test, designed with
knowledge of the underlying distribution multiset.

3 PRELIMINARIES

3.1 Poisson sampling

Consider any partition of the range [0, 1) into disjoint
intervals. When a distribution on [0, 1) is sampled
exactly n times, the number of times elements appear-
ing in the intervals are dependent (for example, they
sum to exactly n), complicating the analysis of many
properties. A standard approach to overcome the de-
pendence, e.g., (Mitzenmacher and Upfal, 2005) is to
sample the distribution a random poi(n) times, the
Poisson distribution with parameter n, resulting in se-
quences of random length close to n.

Poisson tail bounds show that for any α > 0, with
high probability a random variable ∼ poi(n(1 + α)) is
larger than n. Thus, any test t with error probability
1
3 − ε for n samples, can be modified to work with
error probability < 1

3 for poi(n(1 +α)) samples. Since
α can be any positive constant, the test works with a
fractionally larger Poisson parameter.

For a distribution f , the probability that poi(n) sam-
ples generated according to f will result in samples x
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is

f(x) =
e−nn|x|

|x|!
.

In particular, for the uniform distribution u,

u(x) =
e−nn|x|

|x|!
.

We will also use an equivalent formulation of Poisson
sampling. Let h be a non-negative function over [0, 1),

and let H
def
=
∫ 1

0
h(x) denote its integral. Then a dis-

tribution over [0, 1)∗ is poi(nH) according to h iff

• The number of samples in any two disjoint subsets
are independent.

• For any A ⊂ [0, 1), the number of samples in A is
poi(n

∫
x∈A h(x)dx).

3.2 Simulation

Another useful property of Poisson sampling is that
in some cases one can use samples generated by one
distribution to simulate samples generated by another,
without necessarily knowing the underlying distribu-
tion.

Let h and f be any non-negative functions over [0, 1)
such that h is further from 1 than f is, namely for all
x, (h(x)− 1)/(f(x)− 1) ≥ 1.

Let Y be poi(n) samples that are generated according
to either h or u. We show that without the knowledge
of the underlying distribution, one can convert Y to
X such that if the underlying distribution is h then
X ∼ f and if Y ∼ u then X ∼ u.

Lemma 3. There exists an algorithm with input Y , n
and output X such that

• If Y ∼ h, then X ∼ f ,

• If Y ∼ u, then X ∼ u.

Proof. Generate Z ∼ u of length poi(n). Construct
the set of X as follows. Add any sample Yi to the
initially empty set X w.p. (f(Xi) − 1)/(h(Xi) − 1)
and add any sample Zi to the set w.p. (h(Xi) −
f(Xi))/(h(Xi) − 1). One can show that for any bin
A, and the lemma will follow from

• if Y ∼ h, then E[|XA|] = n
∫
x∈A f(x),

• if Y ∼ u, then E[|XA|] = n|A|.

3.3 Error bounds

One can consider two type of error probabilities for
any test t. The average error, which is the error of the
test t when the samples are either from f or u with
equal probability,

P̄ te(f, n)
def
=

1

2
(P te(f, n) + P te(u, n)).

The worst-case error of t which is the larger of the
errors for f and u,

P̂ te(f, n)
def
= max(P te(f, n), P te(u, n)).

As with all hypothesis testing problems,

P̄ te(f, n) ≥ 1

2
min
t

(P te(f, n) + P te(u, n))

=
1

2
−
|f − u|1,n

4
.

Clearly,

P̂ te(f, n) ≥ P̄ te(f, n)

≥ 1

2
−
|f − u|1,n

4
, (1)

and

min
t
P̂ te(f, n) ≤ 2 min

t
P̄ te(f, n)

=
∑
x

min(f(x), u(x)) (2)

= 1−
|f − u|1,n

2
.

Where the `1 distance between f and u is

|f − u|1,n
def
=
∑
x

|f(x)− u(x)|.

4 UPPER BOUND

4.1 Test

We propose a test that distinguishes every f from u
with Poisson n′ = O(N∗(f)

√
logN∗(f)) samples with

error probability ≤ 1
3 , without the knowledge of f . For

brevity, let n = N∗(f).

Let k
def
= dlog2 ne+ 5. Partition the interval [0, 1) into

2k bins I1, . . . , I2k as follows,

Ii
def
=


[0, 2−k) i = 1,
[2i−2−k, 2i−1−k) i = 2, . . . , k,
[1− 2k−i, 1− 2k−i−1) i = k+1, . . . , 2k−1,
[1− 2−k, 1) i = 2k.



Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, Ananda Theertha Suresh

0 11
2

Figure 1: Partition of [0, 1) into I1, . . . , I2k

Note that the bin sizes increase exponentially from I2
to Ik and decrease exponentially from Ik+1 to I2k−1.
This partition is shown in Figure 1.

The test tc, described below, performs a variation of
the χ2-test on the number of samples appearing in each
bin, if either one of them, or their sum, is large, the
test declares f to be non. Note that since the variation
of the χ2-test we use can be negative, we need to check
both the individual values and their sum.

Test tc

Input: Sequence x of length poi(n′
def
= 1000n

√
k)

Output: uni or non
for 1 ≤ i ≤ 2k, let νi = |{x : x ∈ Ii}| and λi = n′|Ii|

if ∃i s.t. (νi−λi)
2−νi

λi
≥ 5
√
k or

2k∑
i=1

(νi−λi)
2−νi

λi
≥ 5
√
k

return non
else

return uni

In the remainder of this section, we prove the compet-
itiveness of tc.

4.2 Bounds on sample complexity

Suppose a monotone distribution f is distinguishable
from u using n samples. In this subsection we show
that with a constant factor more samples we can dis-
tinguish f from u by only using the number of samples
within each bin. Also, we show that if f can be distin-
guished from u, then a variation of χ2 distance on the
number of samples in the bins is large. Conversely, we
show that if f cannot be distinguished from u with n
samples, then χ2 distance is small.

Define a staircase distribution g, shown in Figure 2,
that assigns the same probability as f to each bin.
Namely, for x ∈ Ii

g(x) =
1

|Ii|

∫
y∈Ii

f(y).

The following theorem uses Lemma 3 to relate the er-
ror probability of f to that of g.

Theorem 4. N∗1
4

(g) ≤ 2N∗(f).

Proof. Without loss of generality, suppose that f is
non-increasing. We show that from samples of g (or u),
we can generate samples that are distributed according

0

1

0 1
2 1

Figure 2: g and f

to f (or u). Then we run the same optimal test for f
on the induced samples of g.

Let Y be poi(2n) samples from g. Partition Y into two
sequences Y 1 and Y 2, where each sample in Y appears
in either Y 1 or 1

2 with equal probability. The set of

elements in Y 1 and Y 2 are two independent copies of
Poisson n samples from g and their union is Y .

Since g is not further away from 1 than f , Lemma 3
cannot be applied directly. Instead, observe that the
average of f (and hence g) in Ii is higher than all the
values of f in Ii+1 and it is less than all the values of
f in Ii−1. Also observe that |Ii−1|, |Ii+1| ≥ 1

2 |Ii| and
we are taking twice the number of samples from the
distribution g. By scaling and transforming and using
the following steps we generate samples X within each
bin.

1. For any i ≥ 3, if ∀x ∈ Ii, f(x) ≥ 1 then samples
of X belong to Ii are generated from samples of
Y within Ii−1. Similarly if ∀x ∈ I2, f(x) ≥ 1,
then we use samples of Y 1 from bin I1 to generate
samples in I2.

2. For any i ≤ 2k− 2, if ∀x ∈ Ii, f(x) ≤ 1 then sam-
ples of X belong to Ii are generated from samples
of Y within Ii+1. Similarly if ∀x ∈ I2k−1, f(x) ≤
1, then we use samples of Y 1 from bin I2k to gen-
erate samples in I2k−1.

3. If f(x) − 1 changes sign inside Ii where i ∈
{2, . . . , 2k − 1} for the portion of the Ii where
f(x) ≥ 1 use item 1 or 2 and for the portion where
f(x) ≤ 1 use item 3 or 4 to generate the samples
of X within Ii.

The above procedure is illustrated in Figure 3 for k =
4. An arrow from Ii to Ij indicates that the samples
of X in bin Ij are generated from samples of Y within
bin Ii. The label of the arrow indicates the step used.

Similar to the proof technique in Lemma 3 it can be
shown that the samples X are distributed according
to f (or u) in bins I2, . . . , I2k−1 and has no samples
in I1 ∪ I2k.
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I1 I2 I3 I4 I5 I6 I7 I8
×

(1) (1) (3) (2)(2)(2)(3)

Figure 3: Generation scheme

Let t∗ be a test such that P t
∗

e (f, n)< 1
3 and P t

∗

e (u, n)<
1
3 . The following test, t has error probability less than
0.4.

1. If Y 2 has samples in I1 or I2k then t(Y ) = non.

2. Run the test t∗ on samples X.

When the underlying distribution is u, after taking
Poisson n samples, w.p. ≥ e−

1
16 no sample appears

in I1 ∪ I2k. Since the same test t∗ is used, the total
error in this case is < 1

3 . Adding the probability of
having sample in the I1 ∪ I2k we have P te(u, 2n) <
1
3 + (1− e− 1

16 ) < 0.4.

When the underlying distribution is nonuniform, if a
sample appears in I1∪I2k, then the error is zero while
in the other case it runs the test t∗ and has error prob-
ability less than 1

3 .

So far we have shown that N∗0.4(g) ≤ 2n. Hence, from
Equation (1),

0.4 ≥ 1

2
− |g − u|1,2n

4
. (3)

The following observation helps us evaluate the `1 dis-
tance between g and u.

Observation 5. Since g and u are constant within
each bin, their number of samples within each bin is a
sufficient statistic to distinguish them.

Let νi denote the number of samples in Ii. Let
λi = E[νi] when the samples are distributed according
to u, and λ′i = E[νi] when the samples are distributed
according to f . Note that λi and λ′i are functions of
number of samples and for the ease of notation, param-
eter n is omitted. When the underlying distribution is
u, νi is Poisson distributed with mean at λi and when
the underlying distribution is f or g, νi is Poisson dis-
tributed with mean at λ′i. Let fi be the average of f
in Ii, and ν = ν1, . . . , ν2k.

Let u(ν) be the distribution of ν when X ∼ u and f(ν)
be the distribution of ν when X ∼ f . Then,

u(ν)
def
=
∏
i

e−λiλi
νi

νi!
and f(ν)

def
=
∏
i

e−λ
′
iλ′i

νi

νi!
.

Let Eh denote the expectation with respect to h. The
following lemma, its proof omitted, bounds the `1 dis-
tance between two distributions.

Lemma 6. For any two distributions h1 and h2,

`1(h1, h2)2 ≤ Eh1

[
h1
h2

]
− 1.

The next lemma lower bounds a variant of the χ2 dis-
tance between f and u.

Lemma 7. For n = N∗(f), with poi(2n) samples,

∆
def
=

2k∑
i=1

(λ′i − λi)2

λi
> 0.14.

Proof. Using Observation 5 and Equation (3),

|f(ν)− u(ν)| ≥ 0.4.

Substituting f(ν) and u(ν) and using Lemma 6,

1.16 ≤
∑
ν

2k∏
i=1

e−λ
′
iλ′i

νi

νi!
eλi−λ′i

(
λ′i
λi

)νi
= exp

(
2k∑
i=1

(λ′i − λi)2

λi

)
,

where the last inequality follows from generating func-
tion of Poisson random variables. Hence,

2k∑
i=1

(λ′i − λi)2

λi
≥ ln 1.16 > 0.14.

Next we upper bound the χ2 distance between two
distributions.

Lemma 8. For n = N∗(f), with poi(n) samples,

2k∑
i=1

(λi − λ′i)2

λi + λ′i
≤ 4 ln 3.

Proof. Since samples from f can be used to generate
samples from g, the error of f is at most that of g,
hence N∗(g) ≥ N∗(f). From Equation (2),

1

3
≤
∑
ν

min(u(ν), f(ν))

≤
∑
ν

√
u(ν)f(ν)

= exp(−1

2

2k∑
i=1

(
√
λi −

√
λ′i)

2)

≤ exp

(
−1

4

2k∑
i=1

(λi − λ′i)2

λi + λ′i

)
.

Hence,

2k∑
i=1

(λi − λ′i)2

λi + λ′i
≤ 4 ln 3.
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4.3 Proof of competitiveness

Theorem 9. If n′ > 1000n
√

log n, then P tce (u, n′) ≤
1
3 and P tce (f, n′) ≤ 1

3 .

Proof. Let ν be distributed according to f , and

αi
def
=

(νi − λi)2 − νi
λi

,

α
def
=

2k∑
i=1

αi.

One can show that

E[α] =

2k∑
i=1

(λ′i − λi)2

λi
=
n′

2n
∆,

var[α] =

2k∑
i=1

(λ′i − λi)4 + 4λ′i(λ
′
i − λi)2 + 2λi

′2

λi
2

≤
2k∑
i=1

3(λ′i − λi)4 + 4λi
′2

λi
2 .

Uniform case: If ν is distributed according to u, then
E[α] = 0 and var[α] = 4k. Therefore, by Chebyshev’s
Inequality, P tce (u, n′) ≤ 1

3 .

Non-uniform case: Observe that all of the λi’s are
larger than 1000

√
k/64. Hence by Chebyshev’s In-

equality, if ∃i s.t. (λ′i − λi)
2/λi ≥ 50∆

√
k, then

(νi−λi)
2−νi

λi
≥ 5
√
k w.p. at least 2/3. Otherwise it can

be shown that, var[α] ≤ 3
10 (E[α])2+8k and by Cheby-

shev’s Inequality the error probability is < 1
3 .

Next we show that if the number of samples is small,
then tc errs on samples of f with probability > 2

3 .

Theorem 10. For sufficiently large n, if n′ =
o(n
√

log n) then P tce (f, n′) ≥ 2
3 .

Proof Sketch. By Lemma 8, the χ2 distance between
f and u is o(

√
log n′). Suppose the underlying dis-

tribution is f . The test tc compares a variant of χ2

quantity, α, to the threshold Θ(
√

log n′). Similar to
the proof of Theorem 9, it can be shown that α con-
centrates around its mean, which is smaller than the
threshold. Hence, the test tc declares uni with proba-
bility at least 2

3 .

5 LOWER BOUND

Similar to the previous section, we define bins whose
sizes increase exponentially and construct a family
Cn of monotone decreasing distributions that are flat
within each bin. We show that for any f ∈ Cn,

N∗(f) ≤ n, while no single test can distinguish u from
all f ∈ Cn with o(n

√
log n) samples.

Let m =
⌊√

log4
n
4

⌋
, for simplicity assume m is even,

and k = m2. Define,

Ii
def
=

{
[ 4

i−1−1
3n , 4

i−1
3n ) i = 1, . . . , k

[ 4
k−1
3n , 1) i = k + 1.

Then, |Ii| = 4i−1

n for i = 1, . . . , k. Let I(x) be the
index of the bin containing x.

Let S def
= {1, . . . , m2 } × {m + 1, . . . , 3m2 } × . . . × {k −

m + 1, . . . , k − m
2 }. Then, |S| =

(
m
2

)m
. For any j =

(j1, . . . , jm) ∈ S,

fj(x)
def
=

{
1 +

∑
r:jr≥I(x)

4√
m2jr−1 x /∈ Ik+1

1−
∑m
r=1

4√
m2jr−1

4jr−1
3n−(4k−1) x ∈ Ik+1.

The distribution fj is induced from u, by removing
some probability mass from Ik+1 and spreading it
across I1 . . . , Ijr for each jr. The amount of prob-
ability mass shifted is proportional to the standard
deviation of the number of samples appearing in Ijr .
This ensures that fj is monotone and has exactly m+1
jumps. Let

Cn def
= {fj : j ∈ S}. (4)

Thus, |Cn| = |S| =
(
m
2

)m
. First, we show that

N∗(fj) ≤ n.

Lemma 11. ∀fj ∈ Cn,

N∗(fj) ≤ n.

Proof. For ν’s and λ’s defined in the previous section,
let

β
def
=

m∑
i=1

νji − λji√
λji

.

We show that β concentrates around different values
for u and fj , and use that to prove that they can be
distinguished with ≤ n samples.

When u is sampled poi(n) times,

E[β] = 0

var[β] =

m∑
i=1

n|Iji |
n|Iji |

= m,

whereas if fj is sampled,

E[β] =

m∑
i=1

λji
∑m
k=i

4√
m2jk−1√

λji
≥

m∑
i=1

4√
m

= 4
√
m

var[β] =

m∑
i=1

(
1 +

m∑
k=i

4√
m2jk−1

)
< 1.6m,
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where the last inequality holds for m ≥ 4. Using
Chebyshev’s Inequality,

u : P (β ≥
√

3m) ≤ m

3m
=

1

3
,

fj : P (β ≤
√

3m) ≤ 1.6m

(4−
√

3)
2
m
≤ 1

3
,

hence, ∀j ∈ S, N∗(fj) ≤ n.

The following lemma helps to lower bound the number
of samples necessary to distinguish u from all distri-
butions in Cn.

Lemma 12. For positive x1, . . . , xn,

n∑
i=1

exi ≤ n− 1 + exp(

n∑
i=1

xi).

The next theorem lower bounds the number of samples
needed to distinguish all distributions in Cn from u.

Theorem 13. For any test t, ∃fj ∈ Cn such that,

N t(fj) = Ω
(
N∗(fj)

√
logN∗(fj)

)
.

Proof. We find a lower bound on n′ such that poi(n′)
samples are necessary to distinguish all fj ∈ Cn from

u with error ≤ 1
3 . Consider the average function

fave(x) =
1(
m
2

)m ∑
j∈S

fj(x),

and let

λrj = λr + λr
∑
l:jl≥r

4√
m2jl−1

.

Next we relate the maximum error of all distributions
contained in Cn, to the error of their mixture.

1

3
≥ min

t
max
f∈Cn

max(P te(f, n′), P te(u, n′))

≥ min
t

max(P te(fave, n
′), P te(u, n′))

≥ 1

2
− |fave − u|1,n

′

4
,

where the last inequality follows from Equation (1).
By Lemma 6,

4

9
≤ (|fave − u|1,n′)2 ≤ Efave

[
fave(x)

u(x)

]
− 1.

After moving the constants to left hand side we have,

13

9
≤ Efave

[
fave(x)

u(x)

]
(a)
=

1

|S|2
∑
ν

k+1∏
i=1

e−λiλi
νi

νi!

∑
j∈S

k+1∏
r=1

eλr−λrj

(
λrj
λr

)νr2

(b)
=

1

|S|2
∑
j∈S

∑
k∈S

∑
ν

k+1∏
i=1

e−λiλi
νi

νi!

k+1∏
r=1

(
λrjλrk
λ2r

)νr
(c)

≤ 1

|S|2
∑
j∈S

∑
k∈S

exp

(
16n′

mn

m∑
i1=1

m∑
i2=1

2−|ji1−ki2 |

)
(d)

≤ 1

|S|2
∑
j∈S

∑
k∈S

exp

(
27n′

mn

m∑
i=1

2−|ji−ki|

)

(e)
=

1

|S|2
m∏
i=1

 im−m/2∑
j=im−m+1

im−m/2∑
k=im−m+1

exp

(
27n′

mn
2−|j−k|

)
(f)

≤ 1

|S|2

m
2

m/2∑
j=1

exp

(
27n′

mn
2−|j−b

m
4 c|
)m

=
1

|S|

m/2∑
j=1

exp

(
27n′

mn
2−|j−b

m
4 c|
)m

(g)

≤ 1

|S|

(
m/2− 1 + exp

(
81n′

mn

))m
≤ exp

(
2

(
exp(

81n′

mn
)− 1

))
,

where (a) follows since all fj ’s and u are constant
within each Ii and the number of samples within each
bin is a sufficient statistic for fave(x) and u(x), (b) fol-

lows from
∏k+1
r=1 e

λr−λrj = 1, (c) by substituting λrj
and λrk, (d) since i2 = i1 is the dominant term and
others are exponentially decreasing with ratio at most
1/4, (e) from rewriting the sum of products as product
of sums, (f) from replacing each term by the maximum
value, which occurs for k = (i − 1)m +

⌊
m
4

⌋
, and (g)

from Lemma 12.

Simplifying, we have for any test t, the number of sam-
ples necessary is Ω(nm) where m =

[√
log4

n
4

]
.
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